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ADVANICE RESTRICTED REPORT

THE TWO-QIMENSIONAL TNCOMPRESSIBLE POTENTIAT, FLOW
OVER CORRUGATED AND DISTORTED INFINITE SURFACES

By W. Perl and L. J. Green

SUMMARY

The two-dimensional incompressible potential flow over corru-
gations and bumps of arbitrary shape is derived by conformal trens-
formation., The resunlts are compared with those obtained by the
methods of thin-airfoil theory. Some discussion is included of the
flow over bumps that protrude both inward and outward from a wall.

INTRODUCTION

Analyses of the efiects of local surface distortions on the drag
and the critical speed of airfoils usvally begin with a consideration
of the two-dimensional incoupressible potential flow over a surface
having these distortions. In reference 1, for example, the well-
kncevm approximate methods of thin-airfoil theory are applied to the
calculation of the velocity distridbubtion over periodic corrugations
and isolated bumps of sinusoidal shape.

In this paper the ideal flow past such shapes is derived by more
exact conformal mapping methods of W. Perl of the NACA staff, particu~
larly inasmuch as the numerical application of these methods is almost
as simple as that of tihe approximate methods of thin-airfoil theory.
The regults are compared with those obtained by thin-airfoil theory.
Some incidental discussion of the conditions at & cusped edge and
of the mapping of bumps that extend both inward and outward from a
wall is also given.

The analysis in this paper was begun at Langley Memorial Aero-
navtical Laboratory and completed at the Aircraft Engine Research
Laboratory of the NACA at Cleveland, Ohlo.




2 NACA ARR No. E5805

THE FLOW OVER A CORRUGATED SURFACE

Consider a corrugated surface, all the cross sections of which
parallel to a fixed plane are the same, having infinite length and
arbitrary but perindic shape. It is desired to find the velocity
distribution produced along the surface by an ideal incompressitle
fluid moving parallel %o this plane. The free-stream velocity suf-
ficiently far from the corrugation is assumed to be constant, par-
allel tn the axis of periodicity of the cross section, and of
magritvde unity.

The problem is solved by finding the conformal transformabticn
between points ~f the corrugation (actually the cross section),
taken as periodic about the 6-axis of a z-plane, and points of a
straight line, taken as the @-axis of a {-plane (fig. 1). The
Cartesian mapping function (CMF), which relates confrrmally corre-
sponding pairs of points in the two planes, is defined as the vector
difference 2z - { Dbetween such pairs of points.

A

Thus
v+ 10 | ‘t
L= ¥ + if (1)
2o (EQ-dc=(¥-o) -1 (f-0) J

The various quantities are defined in figure 1.

The CMF z - { can be regarded as a function that is regular
everyvhere outside 2 circle ty virtue of the transformations

z = log p! (2a)

{ =logp (2v)
in vhich the coordinates of p!' and p are

V+i6
eY

P = P“;'O+i¢

Fquation (2a) transforms the semi-infinite periodic strip in the
z-plane, tounded by 9 = 0, 9 = 2x, and the corrugation W(€),

- into the entire region oubtside the p’-plane near circle that corre-

sponds to the corrugation. The corrugation given by the Cartesian
coordinates W and € in the z-plane is represented in the ptf-plane
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by the near circle with polar coordinates e\l"( and 6. Similarly,
eguation (2b) transforms the sem:o.-lz.frute nerlodﬂc strip, bounded
by $ =0, ¢ =2x, and the f-axis (\JO }, into the entire
region outside a vnwt circle in the p plane. The GMF 2z - { ‘becomes

.|.

& function that is regular everyvhere ocutside the p-plane unit
circle and ig therefore expressible by an inverse powsr geries

oo

\Cn
z - { =21og (p'/p) =) — (3)
JPn
1
wherein the constant term, representing a relative translabtion
between the z-plane and Lne Q -plane, has been made zero, The trans-
formation log (p'/p) 1in equation (o) has been used %n reference 2.
On the bovmdaries equabion (3) becomes, with p = 0P ana
Cn = a, + ib,,

=, 2, y
=) ap cos nff + » by sin n¢‘ )
1 1 i
r (4)
~e(f) = Zb cos nf - a sin n¢l
l |

The mapping function W(F) - ie¢(f) for a given boundary \l!(e)
can be obtsined from equations (4). Conversely, special families
of ccrrugations are obitained by selecting various harmonics in equa-
tions (4); for example, a simple type of corrugation is given by

W) =~ 2 cos ¢

e(f) =— EZ.T- sin ¢ > (5)

6(f) =9~ e(@) = ¢+-——S*1¢

vhere T/2 is the thickness ratio of the corrugation, defined as
the total height h (fig. 1) divided by the wave lern“th 2%s ‘the
quantity T is thus analogous to the thickness ratio

(maximum thickness/chord) of airfoil sections, The members of this
family (egquations (5)) corresponding to T = 0, 0.1, 0.2, and 0.3

~

]

are plotted in figure 2 as }%—2- against 0.
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Once the mapping function of a corrugation is known, the veloc~
ity v at any point on the surface is given by the product of the
velocity on the straight-line boundary, which is unity, and the
stretching factor idﬁ/dzl from the straignt line to the corruga~
tion; thus, by use of equations (1),

ey
- dZ’_ ld\!l+ 140
id

/\l~ &) - @)

For the special family of corrugations given by eguations (5)
the velocity distribution reduces to

Av = v-1 _'_2__ r 1 _ _l (7)
*T/2 = wi/2 T %T [

j‘.v'l + (ZT) + 1T cos 6 -;

—

Figure 3 shows the velocity distributions of members of thoe special
family shown in figure 2. As T—>0, ¥ and Av also—> 0, but

. AV . R

- —, — im4 g
both 7— and -;57-2— cos @, These limiting values agree with

the thin-airfoil results obtained by Allen (reference 1),

In the general case of a given arbitrary corrugation V(9),
the COMF W(%) — ie(f) can be determined by successive approxima-
tions. Suppose, for example, that the zeroth approximation to the
corrugation \,I(G) is the straight line ¥ ('ﬁ) - ie (25) = 0, The

firsi-approximation ordinmates V, (), correspondlng to a set of
evenly spaced ,05 values, are uhel" obtained from the given boundary
at the abscissas 6 = ;Ié The function ¢€1(#), conjugate to

‘411(525) , 1is determined by harmonic analysis and synthesis in accord-
ance with equations (4). The resuvlting first-approximation

OF Vy(f) — ieg(f) yields the coordimates Wy (), 61(8) = f—e(P)
of a boundary, which is compared with the given boundary. If the
agreement is not satisfactorily close, the procedure is repeated;

the second-approximation ordinates 1,2(,05) corresponding to the same
set of evenly spaced # values are obtained from the given boundary
at the abscissas 91(55) - €l(¢) etc.
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As an example of the general procedure and for comparison with
the resul.s of Lllen (reference 1) in the case of nonnegligible thick-
ness, a cos%pe corrugation with a thickness ratio of 0.2 was taken
as V= - g oS 6. The zeroth approximation was chosen as the
special corrugation T = 0.2 cf figure 2. The maximum difference
in ordinates of the two surfaces was 30 percent. After the first
apprcximation the maximuin difference between the ordinates of the
given cosine corrugaticn and the first-approximation boundary was
reduced o about 4 percent., A second and a third approximation
Turther reduced the difference to 1 and 0.25 percents, respectively.
The resulting CMF and the velocity distribution for the third
approximabtion are given in table 1. Figure 4 shows this veloclty
distribuvtion as well as the approximate velocity distribution based
on thin-airfoil theory. As was demonstrated by Allen, the approxi-
mate velocity distridbution is a cosine distribution,

The results obtained by the two methods for a thickness ratio
of 20 percent differ appreciably; the maximuvm difference is about
18 percent of the maximum increment of velocity over the free-stream
value. In the range of thickness ratios contemplated by Allen, how-
ever, the resvlts of thin-airfoil theory are undoubtedly of sufficient
accuracy, as far as incompressible potential flow is concerned,

THE FLOW OVER A BUMP

Consider a surface that is perfectly flat except for an isolated
bump or a disturbance of constant chord length and infinite span;
assume the flow over the surface to be at right angles to the span
and of magnitude unity sufficiently far from the bump. A Two-
dimensional symmetrical flow is obtained by reflecting the bump in
the plane surface. This problem is solved by conformally mapping
the symmetrical section, taken in the z-plane, into its axis of
symmetry, taken in the {-plane. The coordinates in the two planes
are (fig. 5)

-
z =x + iy |

t=t+ inf ©

The CMF 2z - { bPecomes a function regular in the exterior of a
circle |p] =R as a result of the Joukowski transformation
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and can be expressed as an inverse power series

z ~-¢ A i:
0

For corresponding points on the boundaries in the z~, {-, and
p-planes,

(9)

Bl

co © ‘-b D
£x(p) =Z E—% cos nf +Z _éE sin np
o R ) L
(10)
T Ay(8) = Z _?1 cos nd —-Z;—g sin ng
o ® 0 J

z(P) = r cos B + ax(P) (r = 2R)

The velocity v at any point of the gymmetrical section is the
product of the velocity at the corresponding point of the circle
|2l = R and the stretching factor |dp/dz|. The result is

v sin 25 (11)

'/@111 p-25) + ()

The gections uvnder consideration are now assumed to be symmetrical
with respect to both the coordinate axes and to have a horizontal
tangent at their chordwise extremities on the x-axis, The Fouriex
series (equations (10)) are thereby simplified; symmetry with
regpect to the xz-exis requires that by = 0, and symebtry with
respect to the y-axis requires the vanishing of even harmonics,
Hence,

(o
<t 8n
Ax = ~—= CCS8 1 :
= -; - % (12a)
- (n odd) .
= — :>' DL 12
Ay % ~ sin nf J
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The condition that the section have a horizontal tangent at the
chordwise extremities, that is,

[ee]

>, nap cos nf
1

ay

dx - @

r sin § + > nap sin ng
1

be zero for @ = 0, is satisfied if

o
2. nay
1

A simple example of a family of bumps satisfying conditions (13)
is given by

w0
0, r+o,n2ay f£0 (13)
1

Ax = — 2 T (?os @ - % cos 3%)
: (14)
Ay =ZT (sinyﬁ——% sin 30 )
/
z=(1- -T—> cos P + I cos 39 (15)
\ 4/ 4

where the value of r has been so adjusted that the chordwise
extremities of the section are at x = I1l. The thickness ratio T
ig defined ag twice the height of the bump divided by its length 2,
The bumps given by equations (14) and (15) are shown in figure 6(a)
for T =0, 0.1, 0.2, and 0,3, The family of symmetrical sections
ghovn in this figure was derived by Kaplan in reference 3 by a
generalization of the Joukowski transformation. The corresponding
velocity distributions are shown in figure 6(Db).

The velocity distribution on the wall (that is, for |x] >1,
¥ = 0) can be obtained from the general expression for the velocity
at any point in the plane outside the section; thus, for an arbi-
trary airfoil situated at an angle of attack « in a free stream
of wnit velocity, the expression for the derivative wy; of the poten-
tial function in the airfoil z-plane is

W - - P
27 az/ap




where wp 1s the derivative of the potential function in the circle p-plane. If p. is

written in the form -
p = Jy+ip
AL X (16)
Q=V- \Vo

o~

evaluation of wp and dz/dp yields the following formulas for the magnitude vz and the
direction [I of the velocity vector in the airfoil plane:

sinh? Q cos” (B + o) + E:osh Qsin (f + «) + sin (o + BT)]Z
v = - (17)
2
(cosh Qsin § ~ Ohx + (S:th Q cos @ + ary

o/ o

_B.A_3_'> [cosh Qsin( ¢+a)+sin(a+BT;J -sinh  cos(F+a) (:osh Qsing —

rof

(sinhQ cosf + -i—%%

van [I = : t1s)

-{sinhQ cos(f+a) QainhQ cos f + ag%’ /coshﬁ" sinf ~ ag;; I,GOShQ sin(f+a)+sin (MBT)]}

where BT is the zero-lift angle.

For a symmetrical flow and section, = Bp = 0; whereas, for points on the wall,
B = x/3f = 0. Eguation (17) thus reduces to

GOVSH °‘ON ¥¥V VOVN
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(v,) _ sirh Q (19)
wall 3
sich Q + (28
\I‘B)’ZS ¢=O

The value of %%%) for arbitrary Q0 is obtained by differen-
D=0

tiating equation (12t), replacing R with ew, and using for ap
the valuves previcugly determined for the sectiom.

The conformal transformation of a sinusoidal bump was next
deteruined by the method of successive approximations outlined in
the precedirng section, The thickness ratic T was taken to be
0.2, 3o that the symmetrical section has the equation

¥ =%0.1 (1 + cos x x) (-1l=X<1) (20)

The symmetrical sectinn of figure 6(a) with T = 0.2 was chosen as
the zercth approximation. Two approximations were carried out. The
maximvm differences tetween the ordinates of the given boundary
(equation (20)) and the successively derived boundaries were about
5, 1.5, and 0,25 percent for the zeroth, the first, and the second
approximations, respectively. Table 2 contains the dabta Ffor the
gercond approximation and figure 7 shows the velocity distribution
over bump and wall. The approximate result of Allen, obtained on
the wagis of thin-airfoil theory, is also shown in figure 7. The
rsximym difference between the two curves is about 8 percent of the
waximum increment of velocity over the free-stream value, This
difference, it should be remembsred, is for a Z20-percent thickness
ratio; for the very small thickness ratios considered by Allen,
thin-airfoil theory is quite adequate.

Figures 6 and 7 show that the velocity distribution in the
neighborhood of the point where bump meets wall merits discussion.
A symmetrical section can become tangent to the wall in any one of
three ways: with infinite curvature, zero curvature, and finite
nonzero curvature, The case of infinite curvature, properly called
a ougp, holds for the special family of sections given by equa-
tions (14) and (15) and also for the trailing edge of a symmetrical
Jdoukowski airfoil, The velocity curve corresponding to both bump
and wall has a minimuvm value at the cusp; the velecity gradient at
the cusp is finite on the bump side and infinite on the wall side
as indicated in figure 6(b). See reference 4 for a comparison with
experiment.

Zero curvature is obbtained at the sharp edge of the symmetrical

gsection if, in addition to conditions (13), the following equation
holds:
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The velocity cwrve in this cage has a mianimm at scme point on the
bump and the velocity gradient is continuous at the point wvhere the
secvion meetz the wall,

The section ovtairned by reflecting the cosine bump in the wall
has finite nonzero curvature at its sharp edge. The velocity is a
minimwi at a point on the bump, as seen in figure 7, hut the conti-
nuity of the velocity gradient at the sharp edge is, from the cal-~
culatione of this paper, still an open question., It is conjectured
vhat, at a sharp edge of this tipe, the velocity gradient hasg &
finite digcontinuity.

EXTERTOR-ITERIOR BIMPS

The flow over & bump hag been derived in the preceding section
b7y refiection of the bimp contour in the wall and analysis of the
resulting symmetrical section, If an exterior-interior buap, nzmely,
a digtorbion of part of a wall in beth direchtions perpendicular to
the wall, is reflected in the wall, a symmetriczl figure-eight gec-
sion results, as indicated in figure 8. The mapping of such a con~
tour onto a circle can be accomplished as previously descrived,
It appears, hovever, that the derivatlve dz/dp of the trangforma-
tion will be zero at a point oubtgide the circle corresponding to a
point within the loop consigiing of tie interior part of the bup
contour and ite reflection. Thad srch a zero must exist becomes
evidens vpon tracing the paths around the figure-eight contour
corresponding o concentric civcles larger than the basic circle,
As irndicated schemgtically in figure 3, the transition contour
between thoge of Tiguvre~eighc type and those simply comnected haa a
sharp-zdged extremity at the point F inside the loop formed by the
interior part of the bup contour ard its reflsciion. At this
gherp edge, az/dp = C. Although tais property of a looped contour
mignt be useful, for ezampie, in locating the singularitics of a
mapping functiorn, this method of attack does not yield the desired
flow over the exterior-initerior bump {(the flow actvally obtained is
that whose zoro streemline is the pata ABCDEFGE in fiz. 8). It may
be noted that the convenbtional application of thin-airfoil theory
also breaks down in this case.

The flow over an extoerior-interior bump can be obtained by
mepping the bump and tue wall contours onto an infinitely long
straight line. DPoints on the bump contour are rslafted to points on
the straight line by the CifF.
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z - [ = Ax + 1Ay

a3 indicated in figure 9, and points on the straight line are related
to points on the unit circle hy the bilinear transformation, which
for the problem under consideration is taken as

i(2o2 21 (21)

p+1

Equation (21) transforms the upper half {-plane into the region
exterior to the unit circle; corresponding points of both regions
are shown in figure S. For points on the boundaries, the inverse-
power-series expression for z - { (equations (9) and (21)) yields

jé an cos nf + ,23 tp sin nf |

0
o

Ay = > by cos nf - :S a, sin nf L (22)
0

E o+ 0x = tan-ggg—:--—Q + hx(f)

2

H
]

y = Ay

The velocity distribution at the surface of the bump is obtained
from the complex velocity function wg:

w

v - [ 1 1
Z2" 3z  dz a (z - C)/dp . dax | . dAy
it Y; 1+ it/ar 1 - (1 + sin B) ¢ + 1 5 )

The absolute magnitude of the velocity v is therefore given by

1

/\/ [1 - (1 + sin @) dg”]z + [(1 + sin @) %—%’5}2

As a simple example of an exterior-interior bump, the family
represented by

Vv =
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AX = b gin @

i

it

Ay =y =b cos @

0
X = tan-gg——:—é +b sin g

2

{te

5 illuctrated for verious values of b, togevher with the corre-
sponding velocity distribubtions, in figuves 10 and 11. By the
methods previously described and also by superposition of solutions
by linear comvinations of CMF's, arbitrary distortions of a straight
wall may be analiryzed or synthesized.

2

CONCLUSTION

The velocity distributions on corrugations and bumps as deter~
mined oy confoxmal transformation are, in the cass of 20-percent
thickness ratio, appreciably different from the corresponding results
by thin-airfoil theory. The maximum differences, expressed as frac-
tiong of the meximum increment of velocity over fres~gtream velocity
produvced by the disturbance, amount to approximately 15 percent for
a ginucoidal corrugation of 2C-percent thickness ratio and 8 percent
for a sinusoidal bump of the same thickmess ratio. In the limit of
zero tinickness ratio, the resulis by conformal transformation are
identical with the results by thin-~airfeil theory.

Aircraft BEngine Research ILaboratory,
National Advisory Cormittee for Aeronaviics,

Cleveland, Ohio.
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TABIE 1. - CMF AND VELCCITY DISTRIBUTION FOR COSIWE CORRUGATION

v
(thin-
airfoil
theory,
refer-
ence 1)

(radians) v c o ay de -

ag af

0 {-0.3142 0 0 0 ~0.14)41210,69%9 | 0.6858

7/12 | =.2925{-.1118] .3736| 1607 —.3996| 7098 7075
/6 | ~.23L3|-.2038] 72741 .2729] -.2971| .75 | .765L
afly | =.1551{-.2659{1.051%] .3228{ ~.17756] 8191 | .8LLO
/3 | =.06931-.298111.3L53] .3272] ~-.0718] .892} .9298

5 w/12 L01L1 |-.308)0 | 1. 61| .3068] .0128] .9673 | 1.0137
/2 090k {~.29%0]1..8638} .2747] .0789{1.0404 | 1.0907

7 n/12 | .187%1-.2652{2.0978! .225k| .1315i1.1113 | 1.1580
2 w/3 | .2133|-.225%{2.3197{ .1916| .1716{1.1760 | 1.213%9
3 a/h | .25731-.1762]2.532%] L7l .2013{1.2320 | 1.2576
5 4/6 ) .2839i-.1208|2.7387] .0566] .220711.2736 | 1.28%0
11 /12 23079{-.061312,9411] .0k82] .2320{1.2996 | 1.3079
v ! .z1elo %.1416} 0 .235%11,%077 | 1.3142

National Advisory Committee
for hAeronautics
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TABIE 2. - CMF ARD VELOCITY DISTRIBUTION FCOR COSTNE BUMP

]

( rad%;/ans Y1 Q Ax Ay x '2‘%5 %%z v
/2 |0 0 0.2000 | 0. 0.306l {0 1.%901
Lw/9 o -.0523 { ,1910 | .137% | .2866 | .1021 |1.3522
7 /18 |0 -,0978 | 1651 | .2756 | .2282 | .1907 |1.2509
w/3 |0 -.1299 | 1262 | L4159 | .13h7 | .2486 | 1.11h9
5 %/18 |0 - 1h36 | 081} .558L | .0217 | .2538 | .9801
2n/9 |0 -.1386 | L0413 1 6977 |-.0718 | .196% | .8793
w/6 |0 ~.10%3 | 019 | L8422 |-.105L | ,1063 | .8272
w/9 |0 -.105% | ,00%1| .9207 {-.0815| .0350 { .8183
/18 |0 -.0949 | 0002 | .980% [-.0%73 | .OOhh | .8%5L
/36 |0 -.0925 { ,0000 | .99%1 |-.0173 | 0006 | .BLEL
0 051 =,0915 10 1,0016 {0 .009% { .85h7
0 10| -.0908 {0 1,006} {0 L0178 | .8598
0 220 | -.088% {0 1.025% |0 0318 | .8735
0 30} =.08Lh6 {0 1.0566 {0 Oh1l6 | .8889
0 0| -,0801 {0 1,1001 |0 LOL76 | .9040
0 ,50| =.0752 |0 1.1559 {0 .0508 | .9180
0 601} ~.0700 |0 1,222 {0 L0518 1 9306
0 .70 | -.0649 {0 1.3055 {0 .0513 | 917
0 80 -.0598 |0 1.4003 {0 L0L97 | .9512
0 90| ~,0550 {0 1.5096 {0 LCh7h | 959
0 | 1.00|-.050% |0 1.6343% {0 OB | .9663

National Advisory Committee
for Aeronautics
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Flgure I = Conformal transformation of a corrugoted surface.
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Figure 5. — Conformal traensformation of a Symmetrical Section.
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